aster.cloud aster.cloud
  • /
  • Platforms
    • Public Cloud
    • On-Premise
    • Hybrid Cloud
    • Data
  • Architecture
    • Design
    • Solutions
    • Enterprise
  • Engineering
    • Automation
    • Software Engineering
    • Project Management
    • DevOps
  • Programming
    • Learning
  • Tools
  • About
  • /
  • Platforms
    • Public Cloud
    • On-Premise
    • Hybrid Cloud
    • Data
  • Architecture
    • Design
    • Solutions
    • Enterprise
  • Engineering
    • Automation
    • Software Engineering
    • Project Management
    • DevOps
  • Programming
    • Learning
  • Tools
  • About
aster.cloud aster.cloud
  • /
  • Platforms
    • Public Cloud
    • On-Premise
    • Hybrid Cloud
    • Data
  • Architecture
    • Design
    • Solutions
    • Enterprise
  • Engineering
    • Automation
    • Software Engineering
    • Project Management
    • DevOps
  • Programming
    • Learning
  • Tools
  • About
  • Data
  • Software
  • Tech

5 Milestones That Created The Internet, 50 Years After The First Network Message

  • root
  • October 30, 2019
  • 5 minute read

Fifty years ago, a UCLA computer science professor and his student sent the first message over the predecessor to the internet, a network called ARPANET.

This SDS Sigma 7 computer sent the first message over the predecessor of the internet in 1969. Andrew ‘FastLizard4’ Adams/Wikimedia Commons, CC BY-SA

On Oct. 29, 1969, Leonard Kleinrock and Charley Kline sent Stanford University researcher Bill Duval a two-letter message: “lo.” The intended message, the full word “login,” was truncated by a computer crash.


Partner with aster.cloud
for your next big idea.
Let us know here.



From our partners:

CITI.IO :: Business. Institutions. Society. Global Political Economy.
CYBERPOGO.COM :: For the Arts, Sciences, and Technology.
DADAHACKS.COM :: Parenting For The Rest Of Us.
ZEDISTA.COM :: Entertainment. Sports. Culture. Escape.
TAKUMAKU.COM :: For The Hearth And Home.
ASTER.CLOUD :: From The Cloud And Beyond.
LIWAIWAI.COM :: Intelligence, Inside and Outside.
GLOBALCLOUDPLATFORMS.COM :: For The World's Computing Needs.
FIREGULAMAN.COM :: For The Fire In The Belly Of The Coder.
ASTERCASTER.COM :: Supra Astra. Beyond The Stars.
BARTDAY.COM :: Prosperity For Everyone.

Much more traffic than that travels through the internet these days, with billions of emails sent and searches conducted daily. As a scholar of how the internet is governed, I know that today’s vast communications web is a result of governments and regulators making choices that collectively built the internet as it is today.

The log page showing the connection from UCLA to Stanford Research Institute on Oct. 29, 1969. Charles S. Kline/UCLA Kleinrock Center for Internet Studies/Wikimedia Commons

Here are five key moments in this journey.

Leonard Kleinrock shows the original document logging the very first ARPANET computer communication.

1978: Encryption failure

Early internet pioneers, in some ways, were remarkably farsighted. In 1973, a group of high school students reportedly gained access to ARPANET, which was supposed to be a closed network managed by the Pentagon.

Computer scientists Vinton Cerf and Robert Kahn suggested building encryption into the internet’s core protocols, which would have made it far more difficult for hackers to compromise the system.

But the U.S. intelligence community objected, though officials didn’t publicly say why. The only reason their intervention is public is because Cerf hinted at it in a 1983 paper he co-authored.

As a result, basically all of today’s internet users have to handle complex passwords and multi-factor authentication systems to ensure secure communications. People with more advanced security needs often use virtual private networks or specialized privacy software like Tor to encrypt their online activity.

However, computers may not have had enough processing power to effectively encrypt internet communications. That could have slowed the network, making it less attractive to users – delaying, or even preventing, wider use by researchers and the public.

Read More  With Security Copilot, Microsoft Brings The Power Of AI To Cyberdefense
Vinton Cerf and Robert Kahn with President George W. Bush at the ceremony where Cerf and Kahn were given the Presidential Medal of Freedom for their contributions to developing the internet. Paul Morse/White House/Wikimedia Commons

1983: ‘The internet’ is born

For the internet to really be a global entity, all kinds of different computers needed to speak the same language to be able to communicate with each other – directly, if possible, rather than slowing things down by using translators.

Hundreds of scientists from various governments collaborated to devise what they called the Open Systems Interconnection standard. It was a complex method that critics considered inefficient and difficult to scale across existing networks.

Cerf and Kahn, however, proposed another way, called Transmission Control Protocol/Internet Protocol. TCP/IP worked more like the regular mail – wrapping up messages in packages and putting the address on the outside. All the computers on the network had to do was pass the message to its destination, where the receiving computer would figure out what to do with the information. It was free for anyone to copy and use on their own computers.

TCP/IP – given that it both worked and was free – enabled the rapid, global scaling of the internet. A variety of governments, including the United States, eventually came out in support of OSI but too late to make a difference. TCP/IP made the internet cheaper, more innovative and less tied to official government standards.

1996: Online speech regulated

By 1996, the internet boasted more than 73,000 servers, and 22% of surveyed Americans were going online. What they found there, though, worried some members of Congress and their constituents – particularly the rapidly growing amount of pornography.

In response, Congress passed the Communications Decency Act, which sought to regulate indecency and obscenity in cyberspace.

The Supreme Court struck down portions of the law on free-speech grounds the next year, but it left in place Section 230, which stated: “No provider or user of an interactive computer service shall be treated as the publisher or speaker of any information provided by another information content provider.”

Read More  Teletext Was Slow But It Paved The Way For The Super-Fast World Of The Internet

Those 26 words, as various observers have noted, released internet service providers and web-hosting companies from legal responsibility for information their customers posted or shared online. This single sentence provided legal security that allowed the U.S. technology industry to flourish. That protection let companies feel comfortable creating a consumer-focused internet, filled with grassroots media outlets, bloggers, customer reviews and user-generated content.

Critics note that Section 230 also allows social media sites like Facebook and Twitter to operate largely without regulation.

1998: US government steps up

The TCP/IP addressing scheme required that every computer or device connected to the internet have its own unique address – which, for computational reasons, was a string of numbers like “192.168.2.201.”

But that’s hard for people to remember – it’s much easier to recall something like “indiana.edu.” There had to be a centralized record of which names went with which addresses, so people didn’t get confused, or end up visiting a site they didn’t intend to.

For years, Jon Postel held the reins to the internet’s address system. Jon Postel/Flickr

Originally, starting in the late 1960s, that record was kept on a floppy disk by a man named Jon Postel. By 1998, though, he and others were pointing out that such a significant amount of power shouldn’t be held by just one person. That year saw the U.S. Department of Commerce lay out a plan to transition control to a new private nonprofit organization, the Internet Corporation for Assigned Names and Numbers – better known as ICANN – that would manage internet addresses around the world.

For nearly 20 years, ICANN did that work under a contract from the Commerce Department, though objections over U.S. government control grew steadily. In 2016, the Commerce Department contract expired, and ICANN’s governance shifted to a board of representatives from more than 100 countries.

Read More  It Is Not YOU, It Is Your Code

Other groups that manage key aspects of internet communications have different structures. The Internet Engineering Task Force, for instance, is a voluntary technical organization open to anyone. There are drawbacks to that approach, but it would have lessened both the reality and perception of U.S. control.

This 2007 photo shows an Iranian nuclear enrichment facility in Natanz, which was apparently the target of the first known cyberweapon to cause physical damage. AP Photo/Hasan Sarbakhshian

2010: War comes online

In June 2010, cybersecurity researchers revealed the discovery of a sophisticated cyber weapon called Stuxnet, which was designed specifically to target equipment used by Iran’s effort to develop nuclear weapons. It was among the first known digital attacks that actually caused physical damage.

Almost a decade later, it’s clear that Stuxnet opened the eyes of governments and other online groups to the possibility of wreaking significant havoc through the internet. These days, nations use cyberattacks with increasing regularity, attacking a range of military and even civilian targets.

There’s certainly cause for hope for online peace and community, but these decisions – along with many others – have shaped cyberspace and with it millions of people’s daily lives. Reflecting on those past choices can help inform upcoming decisions – such as how international law should apply to cyberattacks, or whether and how to regulate artificial intelligence.

Maybe 50 years from now, events in 2019 will be seen as another key turning point in the development of the internet.

The Conversation

Scott Shackelford, Associate Professor of Business Law and Ethics; Director, Ostrom Workshop Program on Cybersecurity and Internet Governance; Cybersecurity Program Chair, IU-Bloomington, Indiana University

This article is republished from The Conversation under a Creative Commons license. Read the original article.


For enquiries, product placements, sponsorships, and collaborations, connect with us at [email protected]. We'd love to hear from you!

Our humans need coffee too! Your support is highly appreciated, thank you!

root

Related Topics
  • Cybersecurity
  • Encryption
  • ICANN
  • Internet
You May Also Like
Getting things done makes her feel amazing
View Post
  • Computing
  • Data
  • Featured
  • Learning
  • Tech
  • Technology

Nurturing Minds in the Digital Revolution

  • April 25, 2025
View Post
  • Software
  • Technology

Canonical Releases Ubuntu 25.04 Plucky Puffin

  • April 17, 2025
View Post
  • Software
  • Technology

IBM Accelerates Momentum in the as a Service Space with Growing Portfolio of Tools Simplifying Infrastructure Management

  • March 27, 2025
View Post
  • Tech

Deep dive into AI with Google Cloud’s global generative AI roadshow

  • February 18, 2025
View Post
  • Data
  • Engineering

Hiding in Plain Site: Attackers Sneaking Malware into Images on Websites

  • January 16, 2025
Volvo Group: Confidently ahead at CES
View Post
  • Tech

Volvo Group: Confidently ahead at CES

  • January 8, 2025
zedreviews-ces-2025-social-meta
View Post
  • Featured
  • Gears
  • Tech
  • Technology

What Not to Miss at CES 2025

  • January 6, 2025
Vehicle manufacturing
View Post
  • Software

IBM Study: Vehicles Believed to be Software Defined and AI Powered by 2035

  • December 12, 2024

Stay Connected!
LATEST
  • 1
    Just make it scale: An Aurora DSQL story
    • May 29, 2025
  • 2
    Reliance on US tech providers is making IT leaders skittish
    • May 28, 2025
  • Examine the 4 types of edge computing, with examples
    • May 28, 2025
  • AI and private cloud: 2 lessons from Dell Tech World 2025
    • May 28, 2025
  • 5
    TD Synnex named as UK distributor for Cohesity
    • May 28, 2025
  • Weigh these 6 enterprise advantages of storage as a service
    • May 28, 2025
  • 7
    Broadcom’s ‘harsh’ VMware contracts are costing customers up to 1,500% more
    • May 28, 2025
  • 8
    Pulsant targets partner diversity with new IaaS solution
    • May 23, 2025
  • 9
    Growing AI workloads are causing hybrid cloud headaches
    • May 23, 2025
  • Gemma 3n 10
    Announcing Gemma 3n preview: powerful, efficient, mobile-first AI
    • May 22, 2025
about
Hello World!

We are aster.cloud. We’re created by programmers for programmers.

Our site aims to provide guides, programming tips, reviews, and interesting materials for tech people and those who want to learn in general.

We would like to hear from you.

If you have any feedback, enquiries, or sponsorship request, kindly reach out to us at:

[email protected]
Most Popular
  • 1
    Cloud adoption isn’t all it’s cut out to be as enterprises report growing dissatisfaction
    • May 15, 2025
  • 2
    Hybrid cloud is complicated – Red Hat’s new AI assistant wants to solve that
    • May 20, 2025
  • 3
    Google is getting serious on cloud sovereignty
    • May 22, 2025
  • oracle-ibm 4
    Google Cloud and Philips Collaborate to Drive Consumer Marketing Innovation and Transform Digital Asset Management with AI
    • May 20, 2025
  • notta-ai-header 5
    Notta vs Fireflies: Which AI Transcription Tool Deserves Your Attention in 2025?
    • May 16, 2025
  • /
  • Technology
  • Tools
  • About
  • Contact Us

Input your search keywords and press Enter.