aster.cloud aster.cloud
  • /
  • Platforms
    • Public Cloud
    • On-Premise
    • Hybrid Cloud
    • Data
  • Architecture
    • Design
    • Solutions
    • Enterprise
  • Engineering
    • Automation
    • Software Engineering
    • Project Management
    • DevOps
  • Programming
    • Learning
  • Tools
  • About
  • /
  • Platforms
    • Public Cloud
    • On-Premise
    • Hybrid Cloud
    • Data
  • Architecture
    • Design
    • Solutions
    • Enterprise
  • Engineering
    • Automation
    • Software Engineering
    • Project Management
    • DevOps
  • Programming
    • Learning
  • Tools
  • About
aster.cloud aster.cloud
  • /
  • Platforms
    • Public Cloud
    • On-Premise
    • Hybrid Cloud
    • Data
  • Architecture
    • Design
    • Solutions
    • Enterprise
  • Engineering
    • Automation
    • Software Engineering
    • Project Management
    • DevOps
  • Programming
    • Learning
  • Tools
  • About
  • Engineering
  • Tools

Build, Deploy, And Scale ML Models Faster With Vertex AI’s New Training Features

  • aster.cloud
  • February 23, 2022
  • 2 minute read

Vertex AI includes over a dozen powerful MLOps tools in one unified interface, so you can build, deploy, and scale ML models faster. We’re constantly updating these tools, and we recently enhanced Vertex AI Training with an improved Local Mode to speed up your debugging process and Auto-Container Packaging to simplify cloud job submissions. In this article, we’ll look at these updates, and how you can use them to accelerate your model training workflow.

Debugging is an inherently repetitive process with small code change iterations.


Partner with aster.cloud
for your next big idea.
Let us know here.



From our partners:

CITI.IO :: Business. Institutions. Society. Global Political Economy.
CYBERPOGO.COM :: For the Arts, Sciences, and Technology.
DADAHACKS.COM :: Parenting For The Rest Of Us.
ZEDISTA.COM :: Entertainment. Sports. Culture. Escape.
TAKUMAKU.COM :: For The Hearth And Home.
ASTER.CLOUD :: From The Cloud And Beyond.
LIWAIWAI.COM :: Intelligence, Inside and Outside.
GLOBALCLOUDPLATFORMS.COM :: For The World's Computing Needs.
FIREGULAMAN.COM :: For The Fire In The Belly Of The Coder.
ASTERCASTER.COM :: Supra Astra. Beyond The Stars.
BARTDAY.COM :: Prosperity For Everyone.

Vertex AI Training is a managed cloud environment that spins up VMs, loads dependencies, brings in data, executes code, and tears down the cluster for you. That’s a lot of overhead to test simple code changes, which can greatly slow down your debugging process. Before submitting a cloud job, it’s common for developers to first test code locally.

Now, with Vertex AI Training’s improved Local Mode, you can iterate and test your work locally on a small sample data set without waiting for the full Cloud VM lifecycle. This is a friendly and fast way to debug code before running it at cloud scale.

By leveraging the environment consistency made possible by Docker Containers, Local Mode  lets users submit their code as a local run with the expectation it will be processed in a similar environment to the one executing a cloud job. This results in greater reliability and reproducibility. With this new capability, you can debug simple run time errors faster since they do not need to submit the job to the cloud and wait for VM cluster lifecycle overhead. Once you have setup the environment,  you can launch a local run with gcloud:

Read More  Building A Mobility Dashboard With Cloud Run And Firestore

 

gcloud ai custom-jobs local-run \
  --executor-image-uri=EXECUTOR_IMAGE_URI \
  --local-package-path=WORKING_DIRECTORY \
  --script=SCRIPT_PATH \
  --output-image-uri=OUTPUT_IMAGE_NAME

 

Once you are ready to run your code at cloud scale, Auto-Container Packaging simplifies the cloud job submission process. To run a training application, you need to upload your code and any dependencies. Previously this process took three steps:

  1. Build the docker container locally.
  2. Push the built container to a container repository.
  3. Create a Cloud Vertex AI Training job.

With Auto-Container Packaging, that 3 step process is brought down to a single Create step:

 

gcloud ai custom-jobs create \
--region=LOCATION \
--display-name=JOB_NAME \
--worker-pool-spec=machine-type=MACHINE_TYPE,replica-count=REPLICA_COUNT,executor-image-uri=EXECUTOR_IMAGE_URI,local-package-path=WORKING_DIRECTORY,script=SCRIPT_PATH

 

Additionally, even if you are not familiar with Docker, Auto-Container Packaging lets you take advantage of the consistency and reproducibility benefits of containerization.

These new Vertex AI Training features further simplify and speed up your model training workflow. Local Mode helps you iterate faster with small code changes to quickly debug runtime errors. Auto-Container Packaging reduces the steps it takes to submit your local python code as a scaled up cloud job.

  • You can try this codelab to gain hands-on experience with these features.
  • To learn more about the improved local mode, visit our local mode documentation guide.
  • Auto-Container Packaging documentation can be found on the Create a Custom Job documentation page under “gcloud.”
  • To learn about Vertex AI, check out this blog post from our developer advocates.

 

By: Winston Chiang (Product Manager) and Nathan Li (Software Engineer)
Source: Google Cloud Blog


For enquiries, product placements, sponsorships, and collaborations, connect with us at [email protected]. We'd love to hear from you!

Our humans need coffee too! Your support is highly appreciated, thank you!

aster.cloud

Related Topics
  • Artificial Intelligence
  • Google Cloud
  • Machine Learning
  • Tutorial
  • Vertex AI
You May Also Like
View Post
  • Engineering

Just make it scale: An Aurora DSQL story

  • May 29, 2025
notta-ai-header
View Post
  • Featured
  • Tools

Notta vs Fireflies: Which AI Transcription Tool Deserves Your Attention in 2025?

  • May 16, 2025
View Post
  • Engineering
  • Technology

Guide: Our top four AI Hypercomputer use cases, reference architectures and tutorials

  • March 9, 2025
View Post
  • Computing
  • Engineering

Why a decades old architecture decision is impeding the power of AI computing

  • February 19, 2025
View Post
  • Engineering
  • Software Engineering

This Month in Julia World

  • January 17, 2025
View Post
  • Engineering
  • Software Engineering

Google Summer of Code 2025 is here!

  • January 17, 2025
View Post
  • Data
  • Engineering

Hiding in Plain Site: Attackers Sneaking Malware into Images on Websites

  • January 16, 2025
View Post
  • Computing
  • Design
  • Engineering
  • Technology

Here’s why it’s important to build long-term cryptographic resilience

  • December 24, 2024

Stay Connected!
LATEST
  • 1
    Enterprises are keen on cloud repatriation – but not for all workloads
    • June 4, 2025
  • 2
    The Summer Adventures : Hiking and Nature Walks Essentials
    • June 2, 2025
  • 3
    Just make it scale: An Aurora DSQL story
    • May 29, 2025
  • 4
    Reliance on US tech providers is making IT leaders skittish
    • May 28, 2025
  • Examine the 4 types of edge computing, with examples
    • May 28, 2025
  • AI and private cloud: 2 lessons from Dell Tech World 2025
    • May 28, 2025
  • 7
    TD Synnex named as UK distributor for Cohesity
    • May 28, 2025
  • Weigh these 6 enterprise advantages of storage as a service
    • May 28, 2025
  • 9
    Broadcom’s ‘harsh’ VMware contracts are costing customers up to 1,500% more
    • May 28, 2025
  • 10
    Pulsant targets partner diversity with new IaaS solution
    • May 23, 2025
about
Hello World!

We are aster.cloud. We’re created by programmers for programmers.

Our site aims to provide guides, programming tips, reviews, and interesting materials for tech people and those who want to learn in general.

We would like to hear from you.

If you have any feedback, enquiries, or sponsorship request, kindly reach out to us at:

[email protected]
Most Popular
  • Understand how Windows Server 2025 PAYG licensing works
    • May 20, 2025
  • By the numbers: How upskilling fills the IT skills gap
    • May 21, 2025
  • 3
    Cloud adoption isn’t all it’s cut out to be as enterprises report growing dissatisfaction
    • May 15, 2025
  • 4
    Hybrid cloud is complicated – Red Hat’s new AI assistant wants to solve that
    • May 20, 2025
  • 5
    Google is getting serious on cloud sovereignty
    • May 22, 2025
  • /
  • Technology
  • Tools
  • About
  • Contact Us

Input your search keywords and press Enter.