aster.cloud aster.cloud
  • /
  • Platforms
    • Public Cloud
    • On-Premise
    • Hybrid Cloud
    • Data
  • Architecture
    • Design
    • Solutions
    • Enterprise
  • Engineering
    • Automation
    • Software Engineering
    • Project Management
    • DevOps
  • Programming
    • Learning
  • Tools
  • About
  • /
  • Platforms
    • Public Cloud
    • On-Premise
    • Hybrid Cloud
    • Data
  • Architecture
    • Design
    • Solutions
    • Enterprise
  • Engineering
    • Automation
    • Software Engineering
    • Project Management
    • DevOps
  • Programming
    • Learning
  • Tools
  • About
aster.cloud aster.cloud
  • /
  • Platforms
    • Public Cloud
    • On-Premise
    • Hybrid Cloud
    • Data
  • Architecture
    • Design
    • Solutions
    • Enterprise
  • Engineering
    • Automation
    • Software Engineering
    • Project Management
    • DevOps
  • Programming
    • Learning
  • Tools
  • About
  • Technology

Google Cloud And Dell Powerscale Transform Semiconductor Design Models

  • aster.cloud
  • March 15, 2022
  • 4 minute read

New technologies like integrated artificial intelligence (AI), edge computing, 5G communications, and Internet of Things (IoT) products, as well as the emergence of customers as competitors with in-house chip design capabilities are forcing the semiconductor industry to shift away from a focus on engineering and operations and toward a strong focus on product development, new operating models, and new market penetration.

According to a 2021 Semiconductor Transformation Study (STS) from Deloitte Consulting and Global Semiconductor Alliance (GSA), 42% of semiconductor companies are experimenting with new go-to-market strategies such as selling integrated solutions and experimenting with nontraditional, cloud-based business models. This is changing the way semiconductor companies go to market, engineer products, and generate revenue.


Partner with aster.cloud
for your next big idea.
Let us know here.



From our partners:

CITI.IO :: Business. Institutions. Society. Global Political Economy.
CYBERPOGO.COM :: For the Arts, Sciences, and Technology.
DADAHACKS.COM :: Parenting For The Rest Of Us.
ZEDISTA.COM :: Entertainment. Sports. Culture. Escape.
TAKUMAKU.COM :: For The Hearth And Home.
ASTER.CLOUD :: From The Cloud And Beyond.
LIWAIWAI.COM :: Intelligence, Inside and Outside.
GLOBALCLOUDPLATFORMS.COM :: For The World's Computing Needs.
FIREGULAMAN.COM :: For The Fire In The Belly Of The Coder.
ASTERCASTER.COM :: Supra Astra. Beyond The Stars.
BARTDAY.COM :: Prosperity For Everyone.

Semiconductor Integrated Circuit (IC) design, also commonly known under an umbrella term EDA, encompasses many workflows that are used to design a circuit (or “chip”). These design workloads are compute and storage centric, requiring large quantities of high-performance compute, and scalable Network Attached Storage (NAS) storage systems for the design of chips. Bringing a chip design as a finished product to the market quickly is crucial for EDA companies, and hence, faster and agile compute and storage infrastructure are essential for the design teams. With increasing design densities, moving from seven to three nanometer, the chip designs are becoming more complex and the demand for highly scalable and performant storage and compute capabilities are ever increasing.

Dell PowerScale for Google Cloud

Google and Dell make it easier to run electronic design automation (EDA) workloads in the cloud, providing a foundation for semiconductor companies to scale their clients and jobs easily while still retaining the same shared volume across all clients, with a high performance and low latency service. The solution provides a tightly integrated, self-service, multiprotocol, file service offering in Google Cloud.

Read More  Qualcomm And Adobe Unleash Creativity Across Snapdragon Mobile, Compute And XR Devices

Dell PowerScale is tightly integrated with Google Cloud and delivers many benefits including:

  • Scale-out storage that grows linearly as thousands of EDA simulation jobs (e.g., simulation) are running concurrently
  • On-demand dedicated capacity to achieve faster aggregate run times, flattening the design curve
  • Flexible architecture supporting engineers and developers the ability to run workflows in the cloud or on-prem without re-platforming apps or learning new tools

Architecture Overview; Burst to cloud chip design

Front-end workflows such as verification and synthesis are compute intensive (some tools are storage I/O intensive too) and the associated jobs tend to be short-lived. Availability of a large number of compute slots for the duration of the job is very valuable to design teams. This requirement is amplified when dealing with larger portions of designs or complex designs to be delivered in tight timelines. This is where the combined capabilities of Google Cloud and PowerScale provide the elasticity for the IC design stakeholders.

  1. First the user interacts with their primary on-prem resources and launches a job with the scheduler directly into the Google Cloud.
  2. The necessary compute instances are created on-demand based on the pre-configured or standard images, and once the resources are idle or jobs complete, they can be terminated. The data sets desired for job execution can be replicated ahead of time using built-in PowerScale SyncIQ feature, and this can be orchestrated as well.
  3. When the instances are terminated, the data persists, and can be reverse-replicated back to on-prem, if needed. This way, there is a bi-directional data-flow that can be orchestrated to be triggered with the jobs or managed separately.
Read More  How Wayfair Is Modernizing, One Database At A Time
Figure 1: Overall EDA workflow in a burst scenario

 

Architecture Overview: Hybrid Model

While the burst to cloud use case entails specific workflows extending into the Google Cloud, a hybrid solution can benefit a broader set of workloads. End users can interact and work directly in Google Cloud, utilizing infrastructure services and accessing datasets with no data egress just as they would for another on-prem location. Figure 2 shows that the license server can be optionally hosted in Google Cloud, or the existing on-prem server can be part of the workflow, depending on licensing requirements for various tools. The PowerScale cluster would host user homes, projects, scratch, tools, repositories and other datasets.

Figure 2: Overall EDA workflow in a hybrid configuration

 

Linear Storage Scalability is Crucial

Selecting a storage solution that scales to meet the demand of compute workers is crucial to a successful EDA run and flattening the design curve. We tested PowerScale using a synthetic EDA benchmark suite. The test suite is used to measure the maximum sustainable throughput that a storage solution can deliver for a specific EDA workload, constructed from Back-End and Front-End subcomponents. We’ve used a Tier_1 all-flash PowerScale solution with 170TB storage capacity and 40 Google Compute Engine instances to run the tests.

The results of the benchmark test show that with PowerScale, as you run more jobs you can deliver more throughput and IOPS. The scale-out architecture allows you to continually manage latency by adding additional nodes. This capability is critical for EDA workloads when they burst to cloud.

A special thanks to Alec Shnapir and Sean Derrington from Google Cloud and Kami Periman from Dell for their contributions.

Read More  Understanding Transactional Locking In Cloud Spanner

By: Guy Rinkevich (Principal Architect, Google Cloud) and Bala Rajendran (Global CTO, EDA and Semiconductor, Dell)
Source: Google Cloud Blog


For enquiries, product placements, sponsorships, and collaborations, connect with us at [email protected]. We'd love to hear from you!

Our humans need coffee too! Your support is highly appreciated, thank you!

aster.cloud

Related Topics
  • Dell
  • Google Cloud
  • HPC
You May Also Like
Getting things done makes her feel amazing
View Post
  • Computing
  • Data
  • Featured
  • Learning
  • Tech
  • Technology

Nurturing Minds in the Digital Revolution

  • April 25, 2025
View Post
  • People
  • Technology

AI is automating our jobs – but values need to change if we are to be liberated by it

  • April 17, 2025
View Post
  • Software
  • Technology

Canonical Releases Ubuntu 25.04 Plucky Puffin

  • April 17, 2025
View Post
  • Computing
  • Public Cloud
  • Technology

United States Army Enterprise Cloud Management Agency Expands its Oracle Defense Cloud Services

  • April 15, 2025
View Post
  • Technology

Tokyo Electron and IBM Renew Collaboration for Advanced Semiconductor Technology

  • April 2, 2025
View Post
  • Software
  • Technology

IBM Accelerates Momentum in the as a Service Space with Growing Portfolio of Tools Simplifying Infrastructure Management

  • March 27, 2025
View Post
  • Technology

IBM contributes key open-source projects to Linux Foundation to advance AI community participation

  • March 22, 2025
View Post
  • Technology

Co-op mode: New partners driving the future of gaming with AI

  • March 22, 2025

Stay Connected!
LATEST
  • college-of-cardinals-2025 1
    The Definitive Who’s Who of the 2025 Papal Conclave
    • May 7, 2025
  • conclave-poster-black-smoke 2
    The World Is Revalidating Itself
    • May 6, 2025
  • 3
    Conclave: How A New Pope Is Chosen
    • April 25, 2025
  • Getting things done makes her feel amazing 4
    Nurturing Minds in the Digital Revolution
    • April 25, 2025
  • 5
    AI is automating our jobs – but values need to change if we are to be liberated by it
    • April 17, 2025
  • 6
    Canonical Releases Ubuntu 25.04 Plucky Puffin
    • April 17, 2025
  • 7
    United States Army Enterprise Cloud Management Agency Expands its Oracle Defense Cloud Services
    • April 15, 2025
  • 8
    Tokyo Electron and IBM Renew Collaboration for Advanced Semiconductor Technology
    • April 2, 2025
  • 9
    IBM Accelerates Momentum in the as a Service Space with Growing Portfolio of Tools Simplifying Infrastructure Management
    • March 27, 2025
  • 10
    Tariffs, Trump, and Other Things That Start With T – They’re Not The Problem, It’s How We Use Them
    • March 25, 2025
about
Hello World!

We are aster.cloud. We’re created by programmers for programmers.

Our site aims to provide guides, programming tips, reviews, and interesting materials for tech people and those who want to learn in general.

We would like to hear from you.

If you have any feedback, enquiries, or sponsorship request, kindly reach out to us at:

[email protected]
Most Popular
  • 1
    IBM contributes key open-source projects to Linux Foundation to advance AI community participation
    • March 22, 2025
  • 2
    Co-op mode: New partners driving the future of gaming with AI
    • March 22, 2025
  • 3
    Mitsubishi Motors Canada Launches AI-Powered “Intelligent Companion” to Transform the 2025 Outlander Buying Experience
    • March 10, 2025
  • PiPiPi 4
    The Unexpected Pi-Fect Deals This March 14
    • March 13, 2025
  • Nintendo Switch Deals on Amazon 5
    10 Physical Nintendo Switch Game Deals on MAR10 Day!
    • March 9, 2025
  • /
  • Technology
  • Tools
  • About
  • Contact Us

Input your search keywords and press Enter.