aster.cloud aster.cloud
  • /
  • Platforms
    • Public Cloud
    • On-Premise
    • Hybrid Cloud
    • Data
  • Architecture
    • Design
    • Solutions
    • Enterprise
  • Engineering
    • Automation
    • Software Engineering
    • Project Management
    • DevOps
  • Programming
    • Learning
  • Tools
  • About
  • /
  • Platforms
    • Public Cloud
    • On-Premise
    • Hybrid Cloud
    • Data
  • Architecture
    • Design
    • Solutions
    • Enterprise
  • Engineering
    • Automation
    • Software Engineering
    • Project Management
    • DevOps
  • Programming
    • Learning
  • Tools
  • About
aster.cloud aster.cloud
  • /
  • Platforms
    • Public Cloud
    • On-Premise
    • Hybrid Cloud
    • Data
  • Architecture
    • Design
    • Solutions
    • Enterprise
  • Engineering
    • Automation
    • Software Engineering
    • Project Management
    • DevOps
  • Programming
    • Learning
  • Tools
  • About
  • Technology

Quantum Mechanics: How The Future Might Influence The Past

  • aster.cloud
  • March 12, 2023
  • 5 minute read

Huw Price, University of Cambridge and Ken Wharton, San José State University

In 2022, the physics Nobel prize was awarded for experimental work showing that the quantum world must break some of our fundamental intuitions about how the universe works.


Partner with aster.cloud
for your next big idea.
Let us know here.



From our partners:

CITI.IO :: Business. Institutions. Society. Global Political Economy.
CYBERPOGO.COM :: For the Arts, Sciences, and Technology.
DADAHACKS.COM :: Parenting For The Rest Of Us.
ZEDISTA.COM :: Entertainment. Sports. Culture. Escape.
TAKUMAKU.COM :: For The Hearth And Home.
ASTER.CLOUD :: From The Cloud And Beyond.
LIWAIWAI.COM :: Intelligence, Inside and Outside.
GLOBALCLOUDPLATFORMS.COM :: For The World's Computing Needs.
FIREGULAMAN.COM :: For The Fire In The Belly Of The Coder.
ASTERCASTER.COM :: Supra Astra. Beyond The Stars.
BARTDAY.COM :: Prosperity For Everyone.

Many look at those experiments and conclude that they challenge “locality” — the intuition that distant objects need a physical mediator to interact. And indeed, a mysterious connection between distant particles would be one way to explain these experimental results.

Others instead think the experiments challenge “realism” — the intuition that there’s an objective state of affairs underlying our experience. After all, the experiments are only difficult to explain if our measurements are thought to correspond to something real. Either way, many physicists agree about what’s been called “the death by experiment” of local realism.

But what if both of these intuitions can be saved, at the expense of a third? A growing group of experts think that we should abandon instead the assumption that present actions can’t affect past events. Called “retrocausality”, this option claims to rescue both locality and realism.


This is article is accompanied by a podcast series called Great Mysteries of Physics which uncovers the greatest mysteries facing physicists today – and discusses the radical proposals for solving them.


Causation

What is causation anyway? Let’s start with the line everyone knows: correlation is not causation. Some correlations are causation, but not all. What’s the difference?

Consider two examples. (1) There’s a correlation between a barometer needle and the weather – that’s why we learn about the weather by looking at the barometer. But no one thinks that the barometer needle is causing the weather. (2) Drinking strong coffee is correlated with a raised heart rate. Here it seems right to say that the first is causing the second.

The difference is that if we “wiggle” the barometer needle, we won’t change the weather. The weather and the barometer needle are both controlled by a third thing, the atmospheric pressure – that’s why they are correlated. When we control the needle ourselves, we break the link to the air pressure, and the correlation goes away.

Read More  Electron Switch May Get Us Closer To Quantum Computers

But if we intervene to change someone’s coffee consumption, we’ll usually change their heart rate, too. Causal correlations are those that still hold when we wiggle one of the variables.

These days, the science of looking for these robust correlations is called “causal discovery”. It’s a big name for a simple idea: finding out what else changes when we wiggle things around us.

In ordinary life, we usually take for granted that the effects of a wiggle are going to show up later than the wiggle itself. This is such a natural assumption that we don’t notice that we’re making it.

But nothing in the scientific method requires this to happen, and it is easily abandoned in fantasy fiction. Similarly in some religions, we pray that our loved ones are among the survivors of yesterday’s shipwreck, say. We’re imagining that something we do now can affect something in the past. That’s retrocausality.

Quantum retrocausality

John Stewart Bell.
John Bell.
wikipedia/cern, CC BY-SA

The quantum threat to locality (that distant objects need a physical mediator to interact) stems from an argument by the Northern Ireland physicist John Bell in the 1960s. Bell considered experiments in which two hypothetical physicists, Alice and Bob, each receive particles from a common source. Each chooses one of several measurement settings, and then records a measurement outcome. Repeated many times, the experiment generates a list of results.

Bell realised that quantum mechanics predicts that there will be strange correlations (now confirmed) in this data. They seemed to imply that Alice’s choice of setting has a subtle “nonlocal” influence on Bob’s outcome, and vice versa – even though Alice and Bob might be light years apart. Bell’s argument is said to pose a threat to Albert Einstein’s theory of special relativity, which is an essential part of modern physics.

Read More  Qualcomm Unveils New Features In Snapdragon X70 Modem-RF System

But that’s because Bell assumed that quantum particles don’t know what measurements they are going to encounter in the future. Retrocausal models propose that Alice’s and Bob’s measurement choices affect the particles back at the source. This can explain the strange correlations, without breaking special relativity.

In recent work, we’ve proposed a simple mechanism for the strange correlation – it involves a familiar statistical phenomenon called Berkson’s bias (see our popular summary here).

There’s now a thriving group of scholars who work on quantum retrocausality. But it’s still invisible to some experts in the wider field. It gets confused for a different view called “superdeterminism”.

Superdeterminism

Superdeterminism agrees with retrocausality that measurement choices and the underlying properties of the particles are somehow correlated.

But superdeterminism treats it like the correlation between the weather and the barometer needle. It assumes there’s some mysterious third thing – a “superdeterminer” – that controls and correlates both our choices and the particles, the way atmospheric pressure controls both the weather and the barometer.

So superdeterminism denies that measurement choices are things we are free to wiggle at will, they are predetermined. Free wiggles would break the correlation, just as in the barometer case. Critics object that superdeterminism thus undercuts core assumptions necessary to undertake scientific experiments. They also say that it means denying free will, because something is controlling both the measurement choices and particles.

These objections don’t apply to retrocausality. Retrocausalists do scientific causal discovery in the usual free, wiggly way. We say it is folk who dismiss retrocausality who are forgetting the scientific method, if they refuse to follow the evidence where it leads.

Read More  Model Innovators: How Digital Twins Are Making Industries More Efficient

Evidence

What is the evidence for retrocausality? Critics ask for experimental evidence, but that’s the easy bit: the relevant experiments just won a Nobel Prize. The tricky part is showing that retrocausality gives the best explanation of these results.

We’ve mentioned the potential to remove the threat to Einstein’s special relativity. That’s a pretty big hint, in our view, and it’s surprising it has taken so long to explore it. The confusion with superdeterminism seems mainly to blame.

In addition, we and others have argued that retrocausality makes better sense of the fact that the microworld of particles doesn’t care about the difference between past and future.

We don’t mean that it is all plain sailing. The biggest worry about retrocausation is the possibility of sending signals to the past, opening the door to the paradoxes of time travel. But to make a paradox, the effect in the past has to be measured. If our young grandmother can’t read our advice to avoid marrying grandpa, meaning we wouldn’t come to exist, there’s no paradox. And in the quantum case, it’s well known that we can never measure everything at once.

Still, there’s work to do in devising concrete retrocausal models that enforce this restriction that you can’t measure everything at once. So we’ll close with a cautious conclusion. At this stage, it’s retrocausality that has the wind in its sails, so hull down towards the biggest prize of all: saving locality and realism from “death by experiment”.

Huw Price, Emeritus Fellow, Trinity College, University of Cambridge and Ken Wharton, Professor of Physics and Astronomy, San José State University

This article is republished from The Conversation under a Creative Commons license. Read the original article.


For enquiries, product placements, sponsorships, and collaborations, connect with us at [email protected]. We'd love to hear from you!

Our humans need coffee too! Your support is highly appreciated, thank you!

aster.cloud

Related Topics
  • John Bell
  • Physics
  • Quantum Mechanics
  • The Conversation
You May Also Like
Getting things done makes her feel amazing
View Post
  • Computing
  • Data
  • Featured
  • Learning
  • Tech
  • Technology

Nurturing Minds in the Digital Revolution

  • April 25, 2025
View Post
  • People
  • Technology

AI is automating our jobs – but values need to change if we are to be liberated by it

  • April 17, 2025
View Post
  • Software
  • Technology

Canonical Releases Ubuntu 25.04 Plucky Puffin

  • April 17, 2025
View Post
  • Computing
  • Public Cloud
  • Technology

United States Army Enterprise Cloud Management Agency Expands its Oracle Defense Cloud Services

  • April 15, 2025
View Post
  • Technology

Tokyo Electron and IBM Renew Collaboration for Advanced Semiconductor Technology

  • April 2, 2025
View Post
  • Software
  • Technology

IBM Accelerates Momentum in the as a Service Space with Growing Portfolio of Tools Simplifying Infrastructure Management

  • March 27, 2025
View Post
  • Technology

IBM contributes key open-source projects to Linux Foundation to advance AI community participation

  • March 22, 2025
View Post
  • Technology

Co-op mode: New partners driving the future of gaming with AI

  • March 22, 2025

Stay Connected!
LATEST
  • college-of-cardinals-2025 1
    The Definitive Who’s Who of the 2025 Papal Conclave
    • May 7, 2025
  • conclave-poster-black-smoke 2
    The World Is Revalidating Itself
    • May 6, 2025
  • 3
    Conclave: How A New Pope Is Chosen
    • April 25, 2025
  • Getting things done makes her feel amazing 4
    Nurturing Minds in the Digital Revolution
    • April 25, 2025
  • 5
    AI is automating our jobs – but values need to change if we are to be liberated by it
    • April 17, 2025
  • 6
    Canonical Releases Ubuntu 25.04 Plucky Puffin
    • April 17, 2025
  • 7
    United States Army Enterprise Cloud Management Agency Expands its Oracle Defense Cloud Services
    • April 15, 2025
  • 8
    Tokyo Electron and IBM Renew Collaboration for Advanced Semiconductor Technology
    • April 2, 2025
  • 9
    IBM Accelerates Momentum in the as a Service Space with Growing Portfolio of Tools Simplifying Infrastructure Management
    • March 27, 2025
  • 10
    Tariffs, Trump, and Other Things That Start With T – They’re Not The Problem, It’s How We Use Them
    • March 25, 2025
about
Hello World!

We are aster.cloud. We’re created by programmers for programmers.

Our site aims to provide guides, programming tips, reviews, and interesting materials for tech people and those who want to learn in general.

We would like to hear from you.

If you have any feedback, enquiries, or sponsorship request, kindly reach out to us at:

[email protected]
Most Popular
  • 1
    IBM contributes key open-source projects to Linux Foundation to advance AI community participation
    • March 22, 2025
  • 2
    Co-op mode: New partners driving the future of gaming with AI
    • March 22, 2025
  • 3
    Mitsubishi Motors Canada Launches AI-Powered “Intelligent Companion” to Transform the 2025 Outlander Buying Experience
    • March 10, 2025
  • PiPiPi 4
    The Unexpected Pi-Fect Deals This March 14
    • March 13, 2025
  • Nintendo Switch Deals on Amazon 5
    10 Physical Nintendo Switch Game Deals on MAR10 Day!
    • March 9, 2025
  • /
  • Technology
  • Tools
  • About
  • Contact Us

Input your search keywords and press Enter.