aster.cloud aster.cloud
  • /
  • Platforms
    • Public Cloud
    • On-Premise
    • Hybrid Cloud
    • Data
  • Architecture
    • Design
    • Solutions
    • Enterprise
  • Engineering
    • Automation
    • Software Engineering
    • Project Management
    • DevOps
  • Programming
    • Learning
  • Tools
  • About
  • /
  • Platforms
    • Public Cloud
    • On-Premise
    • Hybrid Cloud
    • Data
  • Architecture
    • Design
    • Solutions
    • Enterprise
  • Engineering
    • Automation
    • Software Engineering
    • Project Management
    • DevOps
  • Programming
    • Learning
  • Tools
  • About
aster.cloud aster.cloud
  • /
  • Platforms
    • Public Cloud
    • On-Premise
    • Hybrid Cloud
    • Data
  • Architecture
    • Design
    • Solutions
    • Enterprise
  • Engineering
    • Automation
    • Software Engineering
    • Project Management
    • DevOps
  • Programming
    • Learning
  • Tools
  • About
  • Architecture
  • Technology

The Technical Architecture And Components Of A.I. Systems

  • Dean Marc
  • June 7, 2023
  • 2 minute read

An effective AI system relies on various technical, infrastructure, network, storage, compute, and service architecture components working together. Here are some of the key components.

Hardware.

– CPUs (Central Processing Units): General-purpose processors that can handle a variety of tasks, including AI workloads.


Partner with aster.cloud
for your next big idea.
Let us know here.



From our partners:

CITI.IO :: Business. Institutions. Society. Global Political Economy.
CYBERPOGO.COM :: For the Arts, Sciences, and Technology.
DADAHACKS.COM :: Parenting For The Rest Of Us.
ZEDISTA.COM :: Entertainment. Sports. Culture. Escape.
TAKUMAKU.COM :: For The Hearth And Home.
ASTER.CLOUD :: From The Cloud And Beyond.
LIWAIWAI.COM :: Intelligence, Inside and Outside.
GLOBALCLOUDPLATFORMS.COM :: For The World's Computing Needs.
FIREGULAMAN.COM :: For The Fire In The Belly Of The Coder.
ASTERCASTER.COM :: Supra Astra. Beyond The Stars.
BARTDAY.COM :: Prosperity For Everyone.

– GPUs (Graphics Processing Units): Originally designed for graphics rendering, GPUs are now widely used for parallel computation in AI, particularly in training deep learning models.

– TPUs (Tensor Processing Units): Specialised hardware accelerators designed specifically for AI workloads, such as deep learning model training and inference.

– FPGAs (Field-Programmable Gate Arrays): Reconfigurable integrated circuits that can be tailored for specific AI tasks, offering a balance between flexibility and performance.

Storage.

– Local storage: Fast storage devices like SSDs (Solid State Drives) or HDDs (Hard Disk Drives) provide storage for AI systems.

– Distributed storage: Scalable storage solutions like Hadoop HDFS or object storage (e.g., Amazon S3) enable storing and managing large datasets required for AI workloads.

– In-memory storage: High-speed memory storage systems like Redis or Apache Ignite can store frequently accessed data to accelerate AI processing.

Network.

– High-speed networking: Low-latency, high-bandwidth networks are crucial for efficient data transfer and communication between AI system components.

– Load balancing: Distributing AI workloads across multiple servers or clusters to optimize resource utilization and performance.

– Edge computing: Deploying AI models and processing at the network edge, closer to the data sources, can reduce latency and improve responsiveness.

Compute.

– Cloud computing: Public or private cloud infrastructure provides scalable computing resources for AI workloads, enabling rapid scaling and efficient resource utilization.

Read More  Riyadh Air And IBM Sign Collaboration Agreement To Establish Technology Foundation Of The Digitally Led Airline

– On-premises data centers: Some organizations may prefer to build and maintain their data centers for AI workloads, especially when dealing with sensitive data or specific regulatory requirements.

– Serverless computing: Serverless platforms, like AWS Lambda or Google Cloud Functions, allow deploying AI models and processing as functions that automatically scale based on demand.

Image credits: Pexels – Manuel Geissinger

Software and frameworks.

– Machine learning frameworks: Libraries and tools like TensorFlow, PyTorch, and scikit-learn make it easier to develop, train, and deploy AI models.

– Data processing and analytics: Tools like Apache Spark, Hadoop, and Pandas enable efficient data processing, transformation, and analysis required for AI workloads.

– Containerization and orchestration: Technologies like Docker and Kubernetes simplify the deployment, management, and scaling of AI applications and services.

Services and APIs.

– AI Platform-as-a-Service (PaaS): Cloud providers offer AI platforms that abstract away underlying infrastructure and provide easy-to-use tools and services for developing, training, and deploying AI models.

– AI APIs: Pre-built AI models and services, such as natural language processing, computer vision, and speech recognition, can be accessed through APIs provided by cloud platforms or specialized AI vendors.

An effective AI system requires a well-integrated combination of these components, tailored to the specific requirements of the AI workload. Additionally, factors like security, privacy, and compliance must be considered to ensure responsible AI development and deployment.


For enquiries, product placements, sponsorships, and collaborations, connect with us at [email protected]. We'd love to hear from you!

Our humans need coffee too! Your support is highly appreciated, thank you!

Dean Marc

Part of the more nomadic tribe of humanity, Dean believes a boat anchored ashore, while safe, is a tragedy, as this denies the boat its purpose. Dean normally works as a strategist, advisor, operator, mentor, coder, and janitor for several technology companies, open-source communities, and startups. Otherwise, he's on a hunt for some good bean or leaf to enjoy a good read on some newly (re)discovered city or walking roads less taken with his little one.

Related Topics
  • AI
  • AI risk
  • AI Systems
  • Algorithms
  • Artificial Intelligence
  • Cybersecurity
  • Education
  • Humanity
  • Intelligence
  • Machine Learning
  • schools of thought
  • Security
You May Also Like
View Post
  • Computing
  • Multi-Cloud
  • Technology

Reliance on US tech providers is making IT leaders skittish

  • May 28, 2025
View Post
  • Computing
  • Multi-Cloud
  • Technology

Examine the 4 types of edge computing, with examples

  • May 28, 2025
View Post
  • Computing
  • Multi-Cloud
  • Technology

AI and private cloud: 2 lessons from Dell Tech World 2025

  • May 28, 2025
View Post
  • Computing
  • Multi-Cloud
  • Technology

TD Synnex named as UK distributor for Cohesity

  • May 28, 2025
View Post
  • Computing
  • Multi-Cloud
  • Technology

Broadcom’s ‘harsh’ VMware contracts are costing customers up to 1,500% more

  • May 28, 2025
View Post
  • Computing
  • Multi-Cloud
  • Technology

Weigh these 6 enterprise advantages of storage as a service

  • May 28, 2025
View Post
  • Computing
  • Multi-Cloud
  • Technology

Pulsant targets partner diversity with new IaaS solution

  • May 23, 2025
View Post
  • Computing
  • Multi-Cloud
  • Technology

Growing AI workloads are causing hybrid cloud headaches

  • May 23, 2025

Stay Connected!
LATEST
  • 1
    Just make it scale: An Aurora DSQL story
    • May 29, 2025
  • 2
    Reliance on US tech providers is making IT leaders skittish
    • May 28, 2025
  • Examine the 4 types of edge computing, with examples
    • May 28, 2025
  • AI and private cloud: 2 lessons from Dell Tech World 2025
    • May 28, 2025
  • 5
    TD Synnex named as UK distributor for Cohesity
    • May 28, 2025
  • Weigh these 6 enterprise advantages of storage as a service
    • May 28, 2025
  • 7
    Broadcom’s ‘harsh’ VMware contracts are costing customers up to 1,500% more
    • May 28, 2025
  • 8
    Pulsant targets partner diversity with new IaaS solution
    • May 23, 2025
  • 9
    Growing AI workloads are causing hybrid cloud headaches
    • May 23, 2025
  • Gemma 3n 10
    Announcing Gemma 3n preview: powerful, efficient, mobile-first AI
    • May 22, 2025
about
Hello World!

We are aster.cloud. We’re created by programmers for programmers.

Our site aims to provide guides, programming tips, reviews, and interesting materials for tech people and those who want to learn in general.

We would like to hear from you.

If you have any feedback, enquiries, or sponsorship request, kindly reach out to us at:

[email protected]
Most Popular
  • Understand how Windows Server 2025 PAYG licensing works
    • May 20, 2025
  • By the numbers: How upskilling fills the IT skills gap
    • May 21, 2025
  • 3
    Cloud adoption isn’t all it’s cut out to be as enterprises report growing dissatisfaction
    • May 15, 2025
  • 4
    Hybrid cloud is complicated – Red Hat’s new AI assistant wants to solve that
    • May 20, 2025
  • 5
    Google is getting serious on cloud sovereignty
    • May 22, 2025
  • /
  • Technology
  • Tools
  • About
  • Contact Us

Input your search keywords and press Enter.