aster.cloud aster.cloud
  • /
  • Platforms
    • Public Cloud
    • On-Premise
    • Hybrid Cloud
    • Data
  • Architecture
    • Design
    • Solutions
    • Enterprise
  • Engineering
    • Automation
    • Software Engineering
    • Project Management
    • DevOps
  • Programming
    • Learning
  • Tools
  • About
  • /
  • Platforms
    • Public Cloud
    • On-Premise
    • Hybrid Cloud
    • Data
  • Architecture
    • Design
    • Solutions
    • Enterprise
  • Engineering
    • Automation
    • Software Engineering
    • Project Management
    • DevOps
  • Programming
    • Learning
  • Tools
  • About
aster.cloud aster.cloud
  • /
  • Platforms
    • Public Cloud
    • On-Premise
    • Hybrid Cloud
    • Data
  • Architecture
    • Design
    • Solutions
    • Enterprise
  • Engineering
    • Automation
    • Software Engineering
    • Project Management
    • DevOps
  • Programming
    • Learning
  • Tools
  • About
AI | Crystal emerging from bluish fog watercolors and silver
  • Technology

The Emergence of Intelligence – How AI Self-Assembles Through Complexity

  • Dean Marc
  • July 5, 2023
  • 2 minute read

The creation of AI, at its core, is a process of emergence through complexity. It is not “born” in a biological sense, but rather it’s built and trained through layers of algorithms and data. The concept of AI “emerging” refers to the phenomenon that as the complexity of an AI system increases, new properties and capabilities can manifest that were not explicitly programmed into the system. This is often seen in machine learning and deep learning systems, where the AI can learn from data and improve over time, exhibiting behaviours that may seem to “emerge” organically from the learning process.

Similar to the lifecycle of a typical software product or hardware infrastructure, the development of an AI system also follows a lifecycle, sometimes referred to as the AI development lifecycle or AI project lifecycle. This lifecycle typically outlines the sequential stages involved in the development, deployment, and maintenance of an AI system.


Partner with aster.cloud
for your next big idea.
Let us know here.



From our partners:

CITI.IO :: Business. Institutions. Society. Global Political Economy.
CYBERPOGO.COM :: For the Arts, Sciences, and Technology.
DADAHACKS.COM :: Parenting For The Rest Of Us.
ZEDISTA.COM :: Entertainment. Sports. Culture. Escape.
TAKUMAKU.COM :: For The Hearth And Home.
ASTER.CLOUD :: From The Cloud And Beyond.
LIWAIWAI.COM :: Intelligence, Inside and Outside.
GLOBALCLOUDPLATFORMS.COM :: For The World's Computing Needs.
FIREGULAMAN.COM :: For The Fire In The Belly Of The Coder.
ASTERCASTER.COM :: Supra Astra. Beyond The Stars.
BARTDAY.COM :: Prosperity For Everyone.

1. Problem Definition: The first step in the AI lifecycle is defining the problem that needs to be solved. This includes understanding business goals, defining specific objectives for the AI system, and identifying key performance indicators (KPIs) to measure the success of the AI system.

2. Data Collection: AI systems require data to learn from. This step involves gathering relevant data that the AI system will use to train. This could involve data creation, data augmentation, or collecting data from different sources.

3. Data Preparation: The collected data is cleaned and organised. This might involve dealing with missing or inconsistent data, normalisation, and other forms of preprocessing to make the data suitable for training an AI model.

Read More  Cloudflare Expands Relationship With Microsoft, Makes Industry Leading Zero Trust Security Tools Easier Than Ever To Deploy

4. Model Selection & Training: In this stage, an appropriate AI model is chosen based on the problem at hand. The model is then trained using the prepared data. This involves tuning parameters, selecting features, and iteratively refining the model.

5. Evaluation: After training, the model’s performance is evaluated. This involves testing the model on unseen data and measuring its performance using pre-defined KPIs.

6. Deployment: If the model’s performance is satisfactory, it is deployed into the real-world environment where it begins to make predictions or decisions based on new data.

7. Monitoring and Maintenance: After deployment, the AI system needs to be continuously monitored to ensure it is performing as expected. The system may require updates, retraining with new data, or even a complete redesign if the problem scope changes or if the model performance degrades over time.

8. Retirement: If an AI system is no longer needed, or if a better solution has been developed, the AI system is retired. This includes taking care of any data that the system was using or generated.

Ethics and privacy considerations should also be part of the entire lifecycle, from initial problem definition and data collection to deployment and retirement specifically for this context. It is important to ensure that AI systems are developed and used in a way that respects user privacy, minimises bias, and promotes fairness and transparency .


For enquiries, product placements, sponsorships, and collaborations, connect with us at [email protected]. We'd love to hear from you!

Our humans need coffee too! Your support is highly appreciated, thank you!

Dean Marc

Part of the more nomadic tribe of humanity, Dean believes a boat anchored ashore, while safe, is a tragedy, as this denies the boat its purpose. Dean normally works as a strategist, advisor, operator, mentor, coder, and janitor for several technology companies, open-source communities, and startups. Otherwise, he's on a hunt for some good bean or leaf to enjoy a good read on some newly (re)discovered city or walking roads less taken with his little one.

Related Topics
  • AI
  • Artificial Intelligence
  • Machine Learning
  • ML
You May Also Like
View Post
  • Computing
  • Multi-Cloud
  • Technology

Reliance on US tech providers is making IT leaders skittish

  • May 28, 2025
View Post
  • Computing
  • Multi-Cloud
  • Technology

Examine the 4 types of edge computing, with examples

  • May 28, 2025
View Post
  • Computing
  • Multi-Cloud
  • Technology

AI and private cloud: 2 lessons from Dell Tech World 2025

  • May 28, 2025
View Post
  • Computing
  • Multi-Cloud
  • Technology

TD Synnex named as UK distributor for Cohesity

  • May 28, 2025
View Post
  • Computing
  • Multi-Cloud
  • Technology

Broadcom’s ‘harsh’ VMware contracts are costing customers up to 1,500% more

  • May 28, 2025
View Post
  • Computing
  • Multi-Cloud
  • Technology

Weigh these 6 enterprise advantages of storage as a service

  • May 28, 2025
View Post
  • Computing
  • Multi-Cloud
  • Technology

Pulsant targets partner diversity with new IaaS solution

  • May 23, 2025
View Post
  • Computing
  • Multi-Cloud
  • Technology

Growing AI workloads are causing hybrid cloud headaches

  • May 23, 2025

Stay Connected!
LATEST
  • 1
    Just make it scale: An Aurora DSQL story
    • May 29, 2025
  • 2
    Reliance on US tech providers is making IT leaders skittish
    • May 28, 2025
  • Examine the 4 types of edge computing, with examples
    • May 28, 2025
  • AI and private cloud: 2 lessons from Dell Tech World 2025
    • May 28, 2025
  • 5
    TD Synnex named as UK distributor for Cohesity
    • May 28, 2025
  • Weigh these 6 enterprise advantages of storage as a service
    • May 28, 2025
  • 7
    Broadcom’s ‘harsh’ VMware contracts are costing customers up to 1,500% more
    • May 28, 2025
  • 8
    Pulsant targets partner diversity with new IaaS solution
    • May 23, 2025
  • 9
    Growing AI workloads are causing hybrid cloud headaches
    • May 23, 2025
  • Gemma 3n 10
    Announcing Gemma 3n preview: powerful, efficient, mobile-first AI
    • May 22, 2025
about
Hello World!

We are aster.cloud. We’re created by programmers for programmers.

Our site aims to provide guides, programming tips, reviews, and interesting materials for tech people and those who want to learn in general.

We would like to hear from you.

If you have any feedback, enquiries, or sponsorship request, kindly reach out to us at:

[email protected]
Most Popular
  • Understand how Windows Server 2025 PAYG licensing works
    • May 20, 2025
  • By the numbers: How upskilling fills the IT skills gap
    • May 21, 2025
  • 3
    Cloud adoption isn’t all it’s cut out to be as enterprises report growing dissatisfaction
    • May 15, 2025
  • 4
    Hybrid cloud is complicated – Red Hat’s new AI assistant wants to solve that
    • May 20, 2025
  • 5
    Google is getting serious on cloud sovereignty
    • May 22, 2025
  • /
  • Technology
  • Tools
  • About
  • Contact Us

Input your search keywords and press Enter.