aster.cloud aster.cloud
  • /
  • Platforms
    • Public Cloud
    • On-Premise
    • Hybrid Cloud
    • Data
  • Architecture
    • Design
    • Solutions
    • Enterprise
  • Engineering
    • Automation
    • Software Engineering
    • Project Management
    • DevOps
  • Programming
    • Learning
  • Tools
  • About
  • /
  • Platforms
    • Public Cloud
    • On-Premise
    • Hybrid Cloud
    • Data
  • Architecture
    • Design
    • Solutions
    • Enterprise
  • Engineering
    • Automation
    • Software Engineering
    • Project Management
    • DevOps
  • Programming
    • Learning
  • Tools
  • About
aster.cloud aster.cloud
  • /
  • Platforms
    • Public Cloud
    • On-Premise
    • Hybrid Cloud
    • Data
  • Architecture
    • Design
    • Solutions
    • Enterprise
  • Engineering
    • Automation
    • Software Engineering
    • Project Management
    • DevOps
  • Programming
    • Learning
  • Tools
  • About
  • Engineering
  • Technology

Vertex Forecast: An Overview

  • aster.cloud
  • March 14, 2022
  • 4 minute read

A retailer needs to predict product demand or sales, a call center manager wants to predict the call volume to hire more representatives, a hotel chain requires hotel occupancy predictions for next season, and a hospital needs to forecast bed occupancy. Vertex Forecast provides accurate forecasts for these, and many other business forecasting use cases.

(Click to enlarge)

 


Partner with aster.cloud
for your next big idea.
Let us know here.



From our partners:

CITI.IO :: Business. Institutions. Society. Global Political Economy.
CYBERPOGO.COM :: For the Arts, Sciences, and Technology.
DADAHACKS.COM :: Parenting For The Rest Of Us.
ZEDISTA.COM :: Entertainment. Sports. Culture. Escape.
TAKUMAKU.COM :: For The Hearth And Home.
ASTER.CLOUD :: From The Cloud And Beyond.
LIWAIWAI.COM :: Intelligence, Inside and Outside.
GLOBALCLOUDPLATFORMS.COM :: For The World's Computing Needs.
FIREGULAMAN.COM :: For The Fire In The Belly Of The Coder.
ASTERCASTER.COM :: Supra Astra. Beyond The Stars.
BARTDAY.COM :: Prosperity For Everyone.

Univariate vs multivariate datasets

Forecasting datasets come in many shapes and sizes.

In univariate data sets a single variable is observed over a period of time. For example, the famous Airline Passenger dataset (Box and Jenkins (1976): Times Series Analysis: Forecasting and Control, p. 531), is a canonical example of a univariate time series data set. In the graph below, you can see an updated version of this time series that shows clear trend variations and seasonal patterns (source: US Department of Transportation).

Monthly Air Passengers in the US from 1990 to 2020

 

More often, business forecasters are faced with the challenge of forecasting large groups of related time series at scale using multivariate datasets. A typical retail or supply chain demand planning team has to forecast demand for thousands of products across hundreds of locations or zip codes, leading to millions of individual forecasts. Infrastructure SRE teams have to forecast consumption or traffic for hundreds or thousands of compute instances and load balancing nodes. Similarly, financial planning teams often need to forecast revenue and cash flow from hundreds or thousands of individual customers and lines of business.

Forecasting algorithms

The most popular forecasting methods today are statistical models. Auto-Regressive Integrated Moving Average (ARIMA) models, for example, are widely used as a classical method for forecasting, BigQuery ML offers an advanced ARIMA+ model for forecasting use cases.

Read More  Bringing Gemini To Organizations Everywhere

BQARIMA+ is perfect for univariate forecasting use cases; see this great tutorial on how to forecast a single time series from the Google Analytics public data set.

More recently,  deep learning models have been gaining a lot of popularity for forecasting applications. For example the winners of the last M5 competition all used neural networks and ensembles. There is ongoing debate on when to apply which methods, but it’s becoming increasingly clear that neural networks are here to stay for forecasting applications.

Why use deep learning models for forecasting?

Deep learning’s recent success in the forecasting space is because they are Global Forecasting Models. Unlike univariate (i.e. local) forecasting models, for which a separate model is trained for each individual time series in a data set, a Deep Learning time series forecasting model can be trained simultaneously across a large data set of 100s or 1000s of unique time series. This allows the model to learn from correlations and metadata across related time series, such as demand for groups of related products or traffic to related websites or apps. While many types of ML models can be used as GFM, Deep Learning architectures, such as the ones used for Vertex Forecast, are also able to ingest different types of features, such as text data, categorical features, and covariates that are not known in the future. These capabilities make Vertex Forecast ideal for situations where there are very large and varying numbers of time series, and use cases like short lifecycle and cold-start forecasts.

Univariate vs. Global Forecasting Models (Click to enlarge)

 

What is Vertex Forecast?

You can build forecasting models in Vertex Forecast using advanced AutoML algorithms for neural network architecture search. Vertex Forecast offers automated preprocessing of your time-series data, so instead of fumbling with data types and transformations you can just load your dataset into BigQuery or Vertex and AutoML will automatically apply common transformations and even engineer features required for modeling.

Read More  Advanced Topic Modeling Tutorial: How to Use SVD & NMF in Python

Most importantly it searches through a space of multiple Deep Learning layers and components, such as attention, dilated convolution, gating, and skip connections. It then evaluates hundreds of models in parallel to find the right architecture, or ensemble of architectures, for your particular dataset, using time series specific cross-validation and hyperparameter tuning techniques (generic automl tools are not suitable for time series model search and tuning purposes, because they induce leakage into the model selection process, leading to significant overfitting).

This process requires lots of computational resources, but the trials are run in parallel, dramatically reducing the total time needed to find the model architecture for your specific dataset. In fact, it typically takes less time than setting up traditional methods.

Best of all, by integrating Vertex Forecast with Vertex Workbench and Vertex Pipelines, you can significantly speed up the experimentation and deployment process of GFM forecasting capabilities, reducing the time required from months to just a few weeks, and quickly augmenting your forecasting capabilities from being able to process just basic time series inputs to complex unstructured and multimodal signals.

For a more in-depth look into Vertex Forecast check out this video.

 

For more #GCPSketchnote, follow the GitHub repo. For similar cloud content follow me on Twitter @pvergadia and keep an eye out on thecloudgirl.dev

 

 

By: Priyanka Vergadia (Developer Advocate, Google)
Source: Google Cloud Blog


For enquiries, product placements, sponsorships, and collaborations, connect with us at [email protected]. We'd love to hear from you!

Our humans need coffee too! Your support is highly appreciated, thank you!

aster.cloud

Related Topics
  • Google Cloud
  • Machine Learning
  • Vertex
  • Vertex AI
You May Also Like
Getting things done makes her feel amazing
View Post
  • Computing
  • Data
  • Featured
  • Learning
  • Tech
  • Technology

Nurturing Minds in the Digital Revolution

  • April 25, 2025
View Post
  • People
  • Technology

AI is automating our jobs – but values need to change if we are to be liberated by it

  • April 17, 2025
View Post
  • Software
  • Technology

Canonical Releases Ubuntu 25.04 Plucky Puffin

  • April 17, 2025
View Post
  • Computing
  • Public Cloud
  • Technology

United States Army Enterprise Cloud Management Agency Expands its Oracle Defense Cloud Services

  • April 15, 2025
View Post
  • Technology

Tokyo Electron and IBM Renew Collaboration for Advanced Semiconductor Technology

  • April 2, 2025
View Post
  • Software
  • Technology

IBM Accelerates Momentum in the as a Service Space with Growing Portfolio of Tools Simplifying Infrastructure Management

  • March 27, 2025
View Post
  • Technology

IBM contributes key open-source projects to Linux Foundation to advance AI community participation

  • March 22, 2025
View Post
  • Technology

Co-op mode: New partners driving the future of gaming with AI

  • March 22, 2025

Stay Connected!
LATEST
  • college-of-cardinals-2025 1
    The Definitive Who’s Who of the 2025 Papal Conclave
    • May 7, 2025
  • conclave-poster-black-smoke 2
    The World Is Revalidating Itself
    • May 6, 2025
  • 3
    Conclave: How A New Pope Is Chosen
    • April 25, 2025
  • Getting things done makes her feel amazing 4
    Nurturing Minds in the Digital Revolution
    • April 25, 2025
  • 5
    AI is automating our jobs – but values need to change if we are to be liberated by it
    • April 17, 2025
  • 6
    Canonical Releases Ubuntu 25.04 Plucky Puffin
    • April 17, 2025
  • 7
    United States Army Enterprise Cloud Management Agency Expands its Oracle Defense Cloud Services
    • April 15, 2025
  • 8
    Tokyo Electron and IBM Renew Collaboration for Advanced Semiconductor Technology
    • April 2, 2025
  • 9
    IBM Accelerates Momentum in the as a Service Space with Growing Portfolio of Tools Simplifying Infrastructure Management
    • March 27, 2025
  • 10
    Tariffs, Trump, and Other Things That Start With T – They’re Not The Problem, It’s How We Use Them
    • March 25, 2025
about
Hello World!

We are aster.cloud. We’re created by programmers for programmers.

Our site aims to provide guides, programming tips, reviews, and interesting materials for tech people and those who want to learn in general.

We would like to hear from you.

If you have any feedback, enquiries, or sponsorship request, kindly reach out to us at:

[email protected]
Most Popular
  • 1
    IBM contributes key open-source projects to Linux Foundation to advance AI community participation
    • March 22, 2025
  • 2
    Co-op mode: New partners driving the future of gaming with AI
    • March 22, 2025
  • 3
    Mitsubishi Motors Canada Launches AI-Powered “Intelligent Companion” to Transform the 2025 Outlander Buying Experience
    • March 10, 2025
  • PiPiPi 4
    The Unexpected Pi-Fect Deals This March 14
    • March 13, 2025
  • Nintendo Switch Deals on Amazon 5
    10 Physical Nintendo Switch Game Deals on MAR10 Day!
    • March 9, 2025
  • /
  • Technology
  • Tools
  • About
  • Contact Us

Input your search keywords and press Enter.